Arctic black carbon emissions from ships: Patterns, trends, and policy options

Bryan Comer, PhD, Marine Program Lead, ICCT

April 27, 2021 Webinar organized by Iceland Nature Conservation Association and the Clean Arctic Alliance

What to expect

Today, I'll do the following:

- Explain trends in BC emissions from ships in the Arctic and globally
- Describe the impact of IMO's Arctic HFO ban on BC emissions
- Present the BC emissions reduction potential of switching from HFO to distillates
- Explain the additional benefits of switching to distillates compared to HFO and VLSFO
- End with some conclusions

Black carbon is a climate pollutant and a health hazard

Premature Mortality Rates Attributed to Ship BC & POM

BC and solid particles emitted >40°N account for approx. 6200 premature deaths each year

Source: Green, E., Silberman, J., Comer, B., Winebrake, J, & Corbett, J. (2011). *Mortality in latitudes 40°N and above from primary particulate matter emissions by shipping*. Published as IMO document MEPC 62/INF.32, annex (CSC).

Black carbon emissions from ships in the Arctic, 2015

https://theicct.org/publications/prevalence-heavy-fuel-oil-and-black-carbon-arctic-shipping-2015-2025

1450 tonnes of BC emitted >59°N; including 193 t BC in IMO Arctic

THE INTERNATIONAL COUNCIL ON Clean Transportation

icct

Black carbon emissions from ships in the Arctic and globally relative to 2015

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Sources: [left two panels] Comer et al. (2020). *The International Maritime Organization's proposed Arctic heavy fuel oil ban: Likely implications and opportunities for improvement*, <u>https://theicct.org/publications/analysis-HFO-ban-IMO-2020</u>. [right panel 2015 & 2017] Faber et al. (2020). *Fourth IMO Greenhouse Gas Study*. [right panel 2019] ICCT estimate based on Faber et al (2020) trends.

What impact will IMO's Arctic HFO Ban have on BC emissions?

- In November 2020, MEPC 75 approved the HFO ban, which begins in July 2024, but:
 - It only covers the IMO Arctic
 - Ships built after August 2010 are exempt for 5 years because they have protected fuel tanks
 - Russia, USA, Canada, Norway, and Denmark can grant 5-year waivers to their ships in their waters, including their EEZs

Arctic HFO use remaining under the ban:

Due to exemptions and waivers, only 16% of HFO use is banned

Figure 6. HFO used by ships in the Arctic in 2019

Figure 19. HFO use that would have been allowed under the proposed ban, had it been in place in 2019.

Source: Comer et al. (2020). *The International Maritime Organization's proposed Arctic heavy fuel oil ban: Likely implications and opportunities for improvement*, <u>https://theicct.org/publications/analysis-HFO-ban-IMO-2020</u>.

2019 Arctic HFO use

Due to exemptions and waivers, the proposed ban would only eliminate 30% of HFO carriage and 16% of HFO used in the Arctic, reducing BC emissions by just 5%

Figure 8. Amount of HFO carriage, HFO use, and BC emissions remaining or eliminated as a consequence of the proposed HFO ban.

Source: Comer et al. (2020). *The International Maritime Organization's proposed Arctic heavy fuel oil ban: Likely implications and opportunities for improvement*, <u>https://theicct.org/publications/analysis-HFO-ban-IMO-2020</u>.

Arctic black carbon emissions if HFO-fueled ships switch to distillates, shown in blue (2019 example)

Source: Comer et al. (2020). *The International Maritime Organization's proposed Arctic heavy fuel oil ban: Likely implications and opportunities for improvement,* <u>https://theicct.org/publications/analysis-HFO-ban-IMO-2020</u>.

Additional benefits of switching to distillates

- Lowers air pollution. Using distillates reduces SO_x, PM, and BC relative to VLSFO and HFO.
- Enables exhaust aftertreatment: Using distillates allows for the possibility of using BC after-treatment technologies like diesel particulate filters and electrostatic precipitators. Both reduce BC emissions by >90%.
- Lowers potential spill costs. Distillate spills are expected to be 30% less costly than VLSFO and 70% less than HFO.

Sources (in order):

- Comer, B., Georgeff, E., & Osipova, L. *Air emissions and water pollution discharges from ships with scrubbers*. ICCT. Available at <u>https://theicct.org/publications/air-water-pollution-scrubbers-2020</u>.
- ICCT (2019). 6th workshop on marine black carbon emissions. Available at <u>https://theicct.org/events/6th-workshop-marine-black-carbon-emissions</u>
- Comer (2019). *Transitioning away from heavy fuel oil in Arctic shipping*. ICCT. Available at https://theicct.org/publications/transitioning-away-heavy-fuel-oil-arctic-shipping

Conclusions

- BC is a climate pollutant and a health hazard
- BC emissions from ships are growing globally and even more rapidly (>10x faster) in the Arctic.
- IMO's HFO ban will only reduce Arctic BC emissions by only 5% until exemptions and waivers expire.
- Switching from HFO to distillates would immediately reduce BC emissions from ships. BC emissions from HFO-fueled Arctic ships would fall 44%, reducing Arctic-wide ship emissions 30%.
- Switching to distillates has the added benefits of lowering air pollution, enabling the use of exhaust after-treatment, and lowering potential spill costs compared to VLSFO and HFO.

Thank you for your attention! Questions or comments? Email: bryan.comer@theicct.org

